High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity.
نویسندگان
چکیده
As influenza viruses have developed resistance towards current drugs, new inhibitors that prevent viral replication through different inhibitory mechanisms are useful. In this study, we developed a screening procedure to search for new antiinfluenza inhibitors from 1,200,000 compounds and identified previously reported as well as new antiinfluenza compounds. Several antiinfluenza compounds were inhibitory to the influenza RNA-dependent RNA polymerase (RdRP), including nucleozin and its analogs. The most potent nucleozin analog, 3061 (FA-2), inhibited the replication of the influenza A/WSN/33 (H1N1) virus in MDCK cells at submicromolar concentrations and protected the lethal H1N1 infection of mice. Influenza variants resistant to 3061 (FA-2) were isolated and shown to have the mutation on nucleoprotein (NP) that is distinct from the recently reported resistant mutation of Y289H [Kao R, et al. (2010) Nat Biotechnol 28:600]. Recombinant influenza carrying the Y52H NP is also resistant to 3061 (FA-2), and NP aggregation induced by 3061 (FA-2) was identified as the most likely cause for inhibition. In addition, we identified another antiinfluenza RdRP inhibitor 367 which targets PB1 protein but not NP. A mutant resistant to 367 has H456P mutation at the PB1 protein and both the recombinant influenza and the RdRP expressing the PB1 H456P mutation have elevated resistance to 367. Our high-throughput screening (HTS) campaign thus resulted in the identification of antiinfluenza compounds targeting RdRP activity.
منابع مشابه
Establishment of a High-Throughput Assay to Monitor Influenza A Virus RNA Transcription and Replication
Influenza A virus (IAV) poses significant threats to public health because of the recent emergence of highly pathogenic strains and wide-spread resistance to available anti-influenza drugs. Therefore, new antiviral targets and new drugs to fight influenza virus infections are needed. Although IAV RNA transcription/replication represents a promising target for antiviral drug development, no assa...
متن کاملPomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study
Objective: Influenza virus, which is associated with high level of morbidity and mortality, has been recently considered a public health concern; however, the methods of choice to control and treat it are limited. Our previous study showed anti-influenza virus activity of pomegranate peel extract (PPE). In this study, the mechanism through which PPE acts against influenza virus...
متن کاملBunyaviridae RNA Polymerases (L-Protein) Have an N-Terminal, Influenza-Like Endonuclease Domain, Essential for Viral Cap-Dependent Transcription
Bunyaviruses are a large family of segmented RNA viruses which, like influenza virus, use a cap-snatching mechanism for transcription whereby short capped primers derived by endonucleolytic cleavage of host mRNAs are used by the viral RNA-dependent RNA polymerase (L-protein) to transcribe viral mRNAs. It was recently shown that the cap-snatching endonuclease of influenza virus resides in a disc...
متن کاملDnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity.
UNLABELLED The RNA-dependent RNA polymerase (RdRp) of influenza A virus is a heterotrimeric complex composed of the PB1, PB2, and PA subunits. The interplay between host factors and the three subunits of the RdRp is critical to enable viral RNA synthesis to occur in the nuclei of infected cells. In this study, we newly identified host factor DnaJA1, a member of the type I DnaJ/Hsp40 family, act...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 45 شماره
صفحات -
تاریخ انتشار 2010